Bibliography on cutgeneratingfunctionology

[ACdCR16]Cláudio Alves, François Clautiaux, José Valério de Carvalho, and Jürgen Rietz. Dual-Feasible Functions for Integer Programming and Combinatorial Optimization: Basics, Extensions and Applications. EURO Advanced Tutorials on Operational Research. Springer, 2016. ISBN 978-3-319-27602-1. doi:10.1007/978-3-319-27604-5.
[ACornuejolsL05]Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Split closure and intersection cuts. Mathematical Programming, 102(3):457–493, 2005. doi:10.1007/s10107-004-0558-z.
[ALW10]Kent Andersen, Quentin Louveaux, and Robert Weismantel. An analysis of mixed integer linear sets based on lattice point free convex sets. Mathematics of Operations Research, 35(1):233–256, 2010. doi:10.1287/moor.1090.0439.
[ALWW07]Kent Andersen, Quentin Louveaux, Robert Weismantel, and Laurence Wolsey. Inequalities from two rows of a simplex tableau. In Matteo Fischetti and David Williamson, editors, Integer Programming and Combinatorial Optimization. 12th International IPCO Conference, Ithaca, NY, USA, June 25–27, 2007. Proceedings, volume 4513 of Lecture Notes in Computer Science, 1–15. Springer Berlin / Heidelberg, 2007. doi:10.1007/978-3-540-72792-7_1.
[AWW09]Kent Andersen, Christian Wagner, and Robert Weismantel. On an analysis of the strength of mixed-integer cutting planes from multiple simplex tableau rows. SIAM Journal on Optimization, 20(2):967–982, 2009. doi:10.1137/080744360.
[AraozEGJ03]Julián Aráoz, Lisa Evans, Ralph E. Gomory, and Ellis L. Johnson. Cyclic group and knapsack facets. Mathematical Programming, Series B, 96:377–408, 2003. doi:10.1007/s10107-003-0390-x.
[AtamturkGunluk10]Alper Atamtürk and Oktay Günlük. Mingling: mixed-integer rounding with bounds. Mathematical Programming, 123:315–338, 2010. doi:10.1007/s10107-009-0265-x.
[AtamturkK12]Alper Atamtürk and Kiavash Kianfar. N-step mingling inequalities: new facets for the mixed-integer knapsack set. Mathematical Programming, 132(1–2):79–98, 2012. doi:10.1007/s10107-010-0382-6.
[Ave12]Gennadiy Averkov. On finitely generated closures in the theory of cutting planes. Discrete Optimization, 9(4):209–215, 2012. doi:10.1016/j.disopt.2012.06.003.
[Ave13]Gennadiy Averkov. On maximal $S$-free sets and the Helly number for the family of $S$-convex sets. SIAM Journal on Discrete Mathematics, 27(3):1610–1624, 2013. doi:10.1137/110850463.
[AB14]Gennadiy Averkov and Amitabh Basu. On the unique-lifting property. In Jon Lee and Jens Vygen, editors, Integer Programming and Combinatorial Optimization, 76–87. Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-07557-0_7.
[AWW11]Gennadiy Averkov, Christian Wagner, and Robert Weismantel. Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three. Math. Oper. Res., 36(4):721–742, November 2011. doi:10.1287/moor.1110.0510.
[BJS82]Achim Bachem, Ellis L. Johnson, and Rainer Schrader. A characterization of minimal valid inequalities for mixed integer programs. Operations Research Letters, 1(2):63–66, 1982. doi:10.1016/0167-6377(82)90048-7.
[BCCornuejolsN96]Egon Balas, Sebastián Ceria, Gérard Cornuéjols, and Nellisery R. Natraj. Gomory cuts revisited. Operations Research Letters, 19(1):1–9, 1996. doi:10.1016/0167-6377(96)00007-7.
[BJ80]Egon Balas and Robert G. Jeroslow. Strengthening cuts for mixed integer programs. European Journal of Operational Research, 4(4):224–234, 1980. doi:10.1016/0377-2217(80)90106-X.
[BBCornuejolsM09]Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. On the relative strength of split, triangle and quadrilateral cuts. Mathematical Programming Ser. A, 126:281–314, 2009. doi:10.1007/s10107-009-0281-x.
[BBCornuejolsM11]Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. Experiments with two-row cuts from degenerate tableaux. INFORMS Journal on Computing, 23(4):578–590, 2011. doi:10.1287/ijoc.1100.0437.
[BCampeloC+10]Amitabh Basu, Manoel Campêlo, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. On lifting integer variables in minimal inequalities. In Friedrich Eisenbrand and F. Bruce Shepherd, editors, Integer Programming and Combinatorial Optimization, 85–95. Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[BCampeloC+13]Amitabh Basu, Manoel Campêlo, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Unique lifting of integer variables in minimal inequalities. Mathematical Programming, 141(1–2, Ser. A):561–576, 2013. doi:10.1007/s10107-012-0560-9.
[BCCornuejolsZ10a]Amitabh Basu, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Maximal lattice-free convex sets in linear subspaces. Mathematics of Operations Research, 35:704–720, 2010. doi:10.1287/moor.1100.0461.
[BCCornuejolsZ10b]Amitabh Basu, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discret. Math., 24:158–168, February 2010. doi:10.1137/090756375.
[BCCornuejolsZ12]Amitabh Basu, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. A counterexample to a conjecture of Gomory and Johnson. Mathematical Programming Ser. A, 133(1–2):25–38, 2012. doi:10.1007/s10107-010-0407-1.
[BCDS18]Amitabh Basu, Michele Conforti, and Marco Di Summa. An extreme function which is nonnegative and discontinuous everywhere. Mathematical Programming, pages 1–7, September 2018. doi:10.1007/s10107-018-1322-0.
[BCDSP16]Amitabh Basu, Michele Conforti, Marco Di Summa, and Joseph Paat. Extreme functions with an arbitrary number of slopes. In Quentin Louveaux and Martin Skutella, editors, Integer Programming and Combinatorial Optimization: 18th International Conference, IPCO 2016, Liège, Belgium, June 1–3, 2016, Proceedings, pages 190–201. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-33461-5_16.
[BCDSP17]Amitabh Basu, Michele Conforti, Marco Di Summa, and Joseph Paat. The structure of the infinite models in integer programming. In Friedrich Eisenbrand and Jochen Koenemann, editors, Integer Programming and Combinatorial Optimization: 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 63–74. Springer International Publishing, Cham, 2017. doi:10.1007/978-3-319-59250-3_6.
[BCDSZ19]Amitabh Basu, Michele Conforti, Marco Di Summa, and Giacomo Zambelli. Optimal cutting planes from the group relaxations. Mathematics of Operations Research, 44(4):1208–1220, 2019. doi:10.1287/moor.2018.0964.
[BCornuejolsKoppe12]Amitabh Basu, Gérard Cornuéjols, and Matthias Köppe. Unique minimal liftings for simplicial polytopes. Mathematics of Operations Research, 37(2):346–355, May 2012. doi:10.1287/moor.1110.0536.
[BCornuejolsZ11]Amitabh Basu, Gérard Cornuéjols, and Giacomo Zambelli. Convex sets and minimal sublinear functions. Journal of Convex Analysis, 18:427–432, 2011.
[BDP19]Amitabh Basu, Santanu S. Dey, and Joseph Paat. Nonunique lifting of integer variables in minimal inequalities. SIAM Journal on Discrete Mathematics, 33(2):755–783, 2019. doi:10.1137/17M1117070.
[BHKoppeM13]Amitabh Basu, Robert Hildebrand, Matthias Köppe, and Marco Molinaro. A $(k+1)$-slope theorem for the $k$-dimensional infinite group relaxation. SIAM Journal on Optimization, 23(2):1021–1040, 2013. doi:10.1137/110848608.
[BHKoppe13]Amitabh Basu, Robert Hildebrand, and Matthias Köppe. Equivariant perturbation in Gomory and Johnson’s infinite group problem. II. The unimodular two-dimensional case. In Michel Goemans and José Correa, editors, Integer Programming and Combinatorial Optimization, volume 7801 of Lecture Notes in Computer Science, pages 62–73. Springer, 2013. doi:10.1007/978-3-642-36694-9_6.
[BHKoppe14]Amitabh Basu, Robert Hildebrand, and Matthias Köppe. Equivariant perturbation in Gomory and Johnson’s infinite group problem. I. The one-dimensional case. Mathematics of Operations Research, 40(1):105–129, 2014. doi:10.1287/moor.2014.0660.
[BHKoppe16a]Amitabh Basu, Robert Hildebrand, and Matthias Köppe. Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR, 14(2):107–131, 2016. doi:10.1007/s10288-015-0293-8.
[BHKoppe16b]Amitabh Basu, Robert Hildebrand, and Matthias Köppe. Light on the infinite group relaxation I: foundations and taxonomy. 4OR, 14(1):1–40, 2016. doi:10.1007/s10288-015-0292-9.
[BHKoppe17]Amitabh Basu, Robert Hildebrand, and Matthias Köppe. Equivariant perturbation in Gomory and Johnson’s infinite group problem—III: foundations for the $k$-dimensional case with applications to $k=2$. Mathematical Programming, 163(1):301–358, 2017. doi:10.1007/s10107-016-1064-9.
[BHM16]Amitabh Basu, Robert Hildebrand, and Marco Molinaro. Minimal cut-generating functions are nearly extreme. In Quentin Louveaux and Martin Skutella, editors, Integer Programming and Combinatorial Optimization: 18th International Conference, IPCO 2016, Liège, Belgium, June 1–3, 2016, Proceedings, pages 202–213. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-33461-5_17.
[BHM18]Amitabh Basu, Robert Hildebrand, and Marco Molinaro. Minimal cut-generating functions are nearly extreme. Mathematical Programming, Series B, 172(1):329–349, November 2018. doi:10.1007/s10107-017-1153-4.
[BS19]Amitabh Basu and Sriram Sankaranarayanan. Can cut-generating functions be good and efficient? SIAM Journal on Optimization, 29(2):1190–1210, 2019. doi:10.1137/18M117354X.
[Bla78]Charles E. Blair. Minimal inequalities for mixed integer programs. Discrete Mathematics, 24(2):147–151, 1978. doi:10.1016/0012-365X(78)90193-0.
[Bla95]Charles E. Blair. A closed-form representation of mixed-integer program value functions. Mathematical Programming, 71(2):127–136, 1995.
[BJ77]Charles E. Blair and Robert G. Jeroslow. The value function of a mixed integer program: I. Discrete Mathematics, 19(2):121–138, 1977.
[BJ79]Charles E. Blair and Robert G. Jeroslow. The value function of a mixed integer program: II. Discrete Mathematics, 25(1):7–19, 1979.
[BJ82]Charles E. Blair and Robert G. Jeroslow. The value function of an integer program. Mathematical Programming, 23:237–273, 1982.
[BJ84]Charles E. Blair and Robert G. Jeroslow. Constructive characterizations of the value-function of a mixed-integer program I. Discrete Applied Mathematics, 9(3):217–233, 1984.
[BJ85]Charles E. Blair and Robert G. Jeroslow. Constructive characterizations of the value function of a mixed-integer program II. Discrete Applied Mathematics, 10(3):227–240, 1985.
[BCornuejols09]Valentin Borozan and Gérard Cornuéjols. Minimal valid inequalities for integer constraints. Mathematics of Operations Research, 34:538–546, 2009. doi:10.1287/moor.1080.0370.
[BJ74]Claude-Alain Burdet and Ellis L. Johnson. A subadditive approach to the group problem of integer programming. In M. L. Balinski, editor, Approaches to Integer Programming, pages 51–71. Springer Berlin Heidelberg, Berlin, Heidelberg, 1974. doi:10.1007/BFb0120688.
[Che11]Kenneth Chen. Topics in Group Methods for Integer Programming. PhD thesis, Georgia Institute of Technology, June 2011. URL: https://search.proquest.com/docview/902758032.
[CCornuejolsZ14]Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming. Springer, Cham, 2014. ISBN 978-3-319-11007-3. doi:10.1007/978-3-319-11008-0.
[CCornuejolsD+13]Michele Conforti, Gérard Cornuéjols, Aris Daniilidis, Claude Lemaréchal, and Jérôme Malick. Cut-generating functions and $S$-free sets. Mathematics of Operations Research, 40(2):253–275, 2013. doi:10.1287/moor.2014.0670.
[CCornuejolsZ11a]Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. A geometric perspective on lifting. Operations Research, 59(3):569–577, 2011. doi:10.1287/opre.1110.0916.
[CCornuejolsZ11b]Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Corner polyhedra and intersection cuts. Surveys in Operations Research and Management Science, 16:105–120, 2011.
[CDS16]Michele Conforti and Marco Di Summa. Maximal $S$-free convex sets and the Helly number. SIAM Journal on Discrete Mathematics, 30(4):2206–2216, 2016. doi:10.1137/16M1063484.
[Cornuejols07]Gérard Cornuéjols. Revival of the Gomory cuts in the 1990s. Annals of Operations Research, 149(1):63–66, 2007.
[CornuejolsM09]Gérard Cornuéjols and François Margot. On the facets of mixed integer programs with two integer variables and two constraints. Mathematical Programming, 120:429–456, 2009. doi:10.1007/s10107-008-0221-1.
[CornuejolsM13]Gérard Cornuéjols and Marco Molinaro. A 3-Slope Theorem for the infinite relaxation in the plane. Mathematical Programming, 142(1–2):83–105, 2013. doi:10.1007/s10107-012-0562-7.
[CornuejolsWYildiz15]Gérard Cornuéjols, Laurence Wolsey, and Sercan Yıldız. Sufficiency of cut-generating functions. Mathematical Programming, 152(1):643–651, August 2015. doi:10.1007/s10107-014-0780-2.
[DGunluk04]Sanjeeb Dash and Oktay Günlük. Valid inequalities based on simple mixed-integer sets. In Daniel Bienstock and George Nemhauser, editors, Integer Programming and Combinatorial Optimization, 33–45. Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. doi:10.1007/978-3-540-25960-2_3.
[DGunluk06a]Sanjeeb Dash and Oktay Günlük. Valid inequalities based on simple mixed-integer sets. Mathematical Programming, 105:29–53, 2006. doi:10.1007/s10107-005-0599-y.
[DGunluk06b]Sanjeeb Dash and Oktay Günlük. Valid inequalities based on the interpolation procedure. Mathematical Programming, 106(1):111–136, 2006. doi:10.1007/s10107-005-0600-9.
[DPW12]Alberto Del Pia and Robert Weismantel. Relaxations of mixed integer sets from lattice-free polyhedra. 4OR, 10(3):221–244, 2012. doi:10.1007/s10288-012-0198-8.
[Dey07]Santanu S. Dey. Strong cutting planes for unstructured mixed integer programs using multiple constraints. PhD thesis, Purdue University, West Lafayette, Indiana, 2007. URL: http://search.proquest.com/docview/304827785.
[DLTW10]Santanu S. Dey, Andrea Lodi, Andrea Tramontani, and Laurence A. Wolsey. Experiments with two row tableau cuts. In Friedrich Eisenbrand and F. Bruce Shepherd, editors, Integer Programming and Combinatorial Optimization, 424–437. Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-13036-6_32.
[DL11]Santanu S. Dey and Quentin Louveaux. Split rank of triangle and quadrilateral inequalities. Mathematics of Operations Research, 36(3):432–461, 2011. doi:10.1287/moor.1110.0496.
[DR08]Santanu S. Dey and Jean-Philippe P. Richard. Facets of two-dimensional infinite group problems. Mathematics of Operations Research, 33(1):140–166, 2008. doi:10.1287/moor.1070.0283.
[DR09]Santanu S. Dey and Jean-Philippe P. Richard. Gomory functions. December 2009. Workshop on Multiple Row Cuts in Integer Programming, Bertinoro, Italy, talk slides. URL: http://www2.isye.gatech.edu/~sdey30/gomoryfunc2.pdf.
[DR10]Santanu S. Dey and Jean-Philippe P. Richard. Relations between facets of low- and high-dimensional group problems. Mathematical Programming, 123(2):285–313, June 2010. doi:10.1007/s10107-009-0303-8.
[DRLM10]Santanu S. Dey, Jean-Philippe P. Richard, Yanjun Li, and Lisa A. Miller. On the extreme inequalities of infinite group problems. Mathematical Programming, 121(1):145–170, 2010. doi:10.1007/s10107-008-0229-6.
[DW08]Santanu S. Dey and Laurence A. Wolsey. Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In Andrea Lodi, Alessandro Panconesi, and Giovanni Rinaldi, editors, Integer Programming and Combinatorial Optimization. 13th International Conference, IPCO 2008, Bertinoro, Italy, May 26–28, 2008. Proceedings, volume 5035 of Lecture Notes in Computer Science, pages 463–475. Springer Berlin / Heidelberg, 2008. doi:10.1007/978-3-540-68891-4_32.
[DW10a]Santanu S. Dey and Laurence A. Wolsey. Composite lifting of group inequalities and an application to two-row mixing inequalities. Discrete Optim., 7(4):256–268, 2010. doi:10.1016/j.disopt.2010.06.001.
[DW10b]Santanu S. Dey and Laurence A. Wolsey. Two row mixed-integer cuts via lifting. Math. Program., 124(1–2, Ser. B):143–174, 2010. doi:10.1007/s10107-010-0362-x.
[DW10c]Santanu S. Dey and Lauyrence A. Wolsey. Constrained infinite group relaxations of MIPs. SIAM Journal on Optimization, 20(6):2890–2912, 2010. doi:10.1137/090754388.
[DS18]Marco Di Summa. Piecewise smooth extreme functions are piecewise linear. Mathematical Programming, pages 1–29, September 2018. doi:10.1007/s10107-018-1330-0.
[Eis10]Friedrich Eisenbrand. Integer programming and algorithmic geometry of numbers. In M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Programming 1958–2008. Springer-Verlag, 2010.
[Esp08]Daniel G. Espinoza. Computing with multi-row Gomory cuts. In Andrea Lodi, Alessandro Panconesi, and Giovanni Rinaldi, editors, Integer Programming and Combinatorial Optimization, 214–224. Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-68891-4_15.
[Eva02]Lisa Evans. Cyclic group and knapsack facets with applications to cutting planes. PhD thesis, Georgia Institute of Technology, July 2002. URL: https://search.proquest.com/docview/305587637.
[FPX19]Ricardo Fukasawa, Laurent Poirrier, and Álinson S. Xavier. The (not so) trivial lifting in two dimensions. Mathematical Programming Computation, 11(2):211–235, June 2019. doi:10.1007/s12532-018-0146-5.
[Gom58]Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64:275–278, 1958.
[Gom60]Ralph E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597-PR, The RAND Corporation, Santa Monica, CA, 1960.
[Gom63]Ralph E. Gomory. An algorithm for integer solutions to linear programs. Recent advances in mathematical programming, 64:260–302, 1963.
[Gom65]Ralph E. Gomory. On the relation between integer and noninteger solutions to linear programs. Proceedings of the National Academy of Sciences of the United States of America, 53(2):260–265, 1965. doi:10.1073/pnas.53.2.260.
[Gom69]Ralph E. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and its Applications, 2:451–558, 1969. doi:10.1016/0024-3795(69)90017-2.
[Gom07]Ralph E. Gomory. The atoms of integer programming. Annals of Operations Research, 149(1):99–102, 2007. doi:10.1007/s10479-006-0110-z.
[GJ72a]Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, II. Mathematical Programming, 3:359–389, 1972. doi:10.1007/BF01585008.
[GJ72b]Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, I. Mathematical Programming, 3:23–85, 1972. doi:10.1007/BF01584976.
[GJ03]Ralph E. Gomory and Ellis L. Johnson. T-space and cutting planes. Mathematical Programming, 96:341–375, 2003. doi:10.1007/s10107-003-0389-3.
[GJE03]Ralph E. Gomory, Ellis L. Johnson, and Lisa Evans. Corner polyhedra and their connection with cutting planes. Mathematical Programming, 96(2):321–339, 2003.
[GunlukP01]Oktay Günlük and Yves Pochet. Mixing mixed-integer inequalities. Mathematical Programming, 90(3):429–457, May 2001. doi:10.1007/PL00011430.
[Hil13]Robert Hildebrand. Algorithms and Cutting Planes for Mixed Integer Programs. PhD thesis, University of California, Davis, June 2013. URL: https://search.proquest.com/docview/1449166906.
[HKoppeZ18a]Robert Hildebrand, Matthias Köppe, and Yuan Zhou. Equivariant perturbation in Gomory and Johnson’s infinite group problem. VII. Inverse semigroup theory, closures, decomposition of perturbations. 2018. e-print, 61 pages. arXiv:1811.06189.
[HKoppeZ19]Robert Hildebrand, Matthias Köppe, and Yuan Zhou. On perturbation spaces of minimal valid functions: inverse semigroup theory and equivariant decomposition theorem. In A. Lodi and V. Nagarajan, editors, Integer Programming and Combinatorial Optimization. IPCO 2019, volume 11480 of Lecture Notes in Computer Science. Springer, Cham, 2019. doi:10.1007/978-3-030-17953-3_19.
[HKoppeZ16]Chun Yu Hong, Matthias Köppe, and Yuan Zhou. Software for cut-generating functions in the Gomory–Johnson model and beyond. In Gert-Martin Greuel, Thorsten Koch, Peter Paule, and Andrew Sommese, editors, Mathematical Software – ICMS 2016: 5th International Conference, Berlin, Germany, July 11–14, 2016, Proceedings, pages 284–291. Springer International Publishing, 2016. doi:10.1007/978-3-319-42432-3_35.
[HKoppeZ18b]Chun Yu Hong, Matthias Köppe, and Yuan Zhou. Equivariant perturbation in Gomory and Johnson’s infinite group problem (V). Software for the continuous and discontinuous 1-row case. Optimization Methods and Software, 33(3):475–498, 2018. doi:10.1080/10556788.2017.1366486.
[Jer78]Robert G. Jeroslow. Cutting-plane theory: algebraic methods. Discrete Mathematics, 23(2):121–150, 1978.
[Jer79]Robert G. Jeroslow. Minimal inequalities. Mathematical Programming, 17(1):1–15, 1979.
[Joh73]Ellis L. Johnson. Cyclic groups, cutting planes and shortest paths. Mathematical Programming, pages 185–211, 1973.
[Joh74]Ellis L. Johnson. On the group problem for mixed integer programming. Mathematical Programming Study, 2:137–179, 1974. doi:10.1007/BFb0120692.
[Joh81]Ellis L. Johnson. Characterization of facets for multiple right-hand choice linear programs. In H. König, B. Korte, and K. Ritter, editors, Mathematical Programming at Oberwolfach, pages 112–142. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981. doi:10.1007/BFb0120925.
[KF09]Kiavash Kianfar and Yahya Fathi. Generalized mixed integer rounding inequalities: facets for infinite group polyhedra. Mathematical Programming, 120:313–346, 2009.
[KF10]Kiavash Kianfar and Yahya Fathi. Generating facets for finite master cyclic group polyhedra using n-step mixed integer rounding functions. European Journal of Operational Research, 207:105–109, 2010.
[Kla02]Diego Klabjan. A new subadditive approach to integer programming. In Integer Programming and Combinatorial Optimization, pages 384–400. Springer, 2002.
[KoppeW17]Matthias Köppe and Jiawei Wang. Structure and interpretation of dual-feasible functions. Electronic Notes in Discrete Mathematics, 62:153–158, 2017. LAGOS ‘17 – IX Latin and American Algorithms, Graphs and Optimization. doi:10.1016/j.endm.2017.10.027.
[KoppeW18]Matthias Köppe and Jiawei Wang. Characterization and approximation of strong general dual feasible functions. In Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub, editors, Combinatorial Optimization, ISCO 2018, volume 10856 of Lecture Notes in Computer Science, pages 265–276. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-96151-4_23.
[KoppeZ15]Matthias Köppe and Yuan Zhou. An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem. Operations Research Letters, 43(4):438–444, 2015. doi:10.1016/j.orl.2015.06.004.
[KoppeZ16]Matthias Köppe and Yuan Zhou. Toward computer-assisted discovery and automated proofs of cutting plane theorems. In Raffaele Cerulli, Satoru Fujishige, and A. Ridha Mahjoub, editors, Combinatorial Optimization: 4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16–18, 2016, Revised Selected Papers, pages 332–344. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-45587-7_29.
[KoppeZ17b]Matthias Köppe and Yuan Zhou. On the notions of facets, weak facets, and extreme functions of the Gomory–Johnson infinite group problem. In Friedrich Eisenbrand and Jochen Koenemann, editors, Integer Programming and Combinatorial Optimization: 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26–28, 2017, Proceedings, pages 330–342. Springer International Publishing, Cham, 2017. doi:10.1007/978-3-319-59250-3_27.
[KoppeZ18]Matthias Köppe and Yuan Zhou. Equivariant perturbation in Gomory and Johnson’s infinite group problem. VI. The curious case of two-sided discontinuous minimal valid functions. Discrete Optimization, 30:51–72, 2018. doi:10.1016/j.disopt.2018.05.003.
[KoppeZ19]Matthias Köppe and Yuan Zhou. All cyclic group facets inject. 2019. e-print. arXiv:1807.09758.
[LB18]Teresa M. Lebair and Amitabh. Basu. Approximation of minimal functions by extreme functions. SIAM Journal on Optimization, 28(3):2518–2540, 2018. doi:10.1137/17M1143605.
[LL02]Adam N. Letchford and Andrea Lodi. Strengthening Chvátal–Gomory cuts and Gomory fractional cuts. Operations Research Letters, 30(2):74–82, 2002. doi:10.1016/S0167-6377(02)00112-8.
[LP14]Quentin Louveaux and Laurent Poirrier. An algorithm for the separation of two-row cuts. Mathematical Programming, 143(1–2):111–146, 2014. doi:10.1007/s10107-012-0597-9.
[LW03]Quentin Louveaux and Laurence A. Wolsey. Lifting, superadditivity, mixed integer rounding and single node flow sets revisited. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(3):173–207, 2003. doi:10.1007/s10288-003-0016-4.
[MLR08]Lisa A. Miller, Yanjun Li, and Jean-Philippe P. Richard. New inequalities for finite and infinite group problems from approximate lifting. Naval Research Logistics (NRL), 55(2):172–191, 2008. doi:10.1002/nav.20275.
[MoranRD11]Diego A. Morán R. and Santanu S. Dey. On maximal $S$-free convex sets. SIAM Journal on Discrete Mathematics, 25:379–393, 2011. doi:10.1137/100796947.
[NW88]George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial optimization. Volume 18. Wiley New York, 1988.
[Poi12]Laurent Poirrier. Multi-row approaches to cutting plane generation. PhD thesis, University of Liege, Belgium, 2012. URL: http://hdl.handle.net/2268/134593.
[RD10]Jean-Philippe P. Richard and Santanu S. Dey. The group-theoretic approach in mixed integer programming. In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958–2008, pages 727–801. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-540-68279-0_19.
[RLM09]Jean-Philippe P. Richard, Yanjun Li, and Lisa A. Miller. Valid inequalities for MIPs and group polyhedra from approximate liftings. Mathematical Programming, 118(2):253–277, 2009. doi:10.1007/s10107-007-0190-9.
[RAdCC12]Jürgen Rietz, Cláudio Alves, José Manuel Valério de Carvalho, and François Clautiaux. Computing valid inequalities for general integer programs using an extension of maximal dual feasible functions to negative arguments. In 1st International Conference on Operations Research and Enterprise Systems-ICORES 2012. 2012.
[RAdCC14]Jürgen Rietz, Cláudio Alves, José Manuel Valério de Carvalho, and François Clautiaux. On the properties of general dual-feasible functions. In Beniamino Murgante, Sanjay Misra, Ana Maria A. C. Rocha, Carmelo Torre, Jorge Gustavo Rocha, Maria Irene Falcão, David Taniar, Bernady O. Apduhan, and Osvaldo Gervasi, editors, Computational Science and Its Applications – ICCSA 2014: 14th International Conference, Guimarães, Portugal, June 30 – July 3, 2014, Proceedings, Part II, pages 180–194. Springer International Publishing, Cham, 2014. doi:10.1007/978-3-319-09129-7_14.
[Shi09]Sangho Shim. Large scale group network optimization. PhD thesis, Georgia Institute of Technology, December 2009. URL: https://search.proquest.com/docview/304889985.
[SJ13]Sangho Shim and Ellis L. Johnson. Cyclic group blocking polyhedra. Mathematical Programming, 138(1–2):273–307, 2013. doi:10.1007/s10107-012-0536-9.
[Sug15]Masumi Sugiyama. Cut-generating functions for integer linear programming. Master’s thesis, University of California, Davis, June 2015. URL: https://www.math.ucdavis.edu/files/1514/4469/2452/Masumi_Sugiyama_ugrad_thesis.pdf.
[Wol81]Laurence A. Wolsey. Integer programming duality: price functions and sensitivity analysis. Mathematical Programming, 20(1):173–195, December 1981. doi:10.1007/BF01589344.
[Xia17]Peijun Xiao. Computation on polyhedral arrangements and its applications on lifting regions. Master’s thesis, University of California, Davis, June 2017. URL: https://www.math.ucdavis.edu/files/2714/9702/1589/peijun_thesis.pdf.
[YildizCornuejols16]Sercan Yıldız and Gérard Cornuéjols. Cut-generating functions for integer variables. Mathematics of Operations Research, 41(4):1381–1403, 2016. doi:10.1287/moor.2016.0781.
[Zam09]Giacomo Zambelli. On degenerate multi-row Gomory cuts. Operations Research Letters, 37(1):21–22, January 2009. doi:10.1016/j.orl.2008.09.005.
[Zho17]Yuan Zhou. Infinite-Dimensional Relaxations of Mixed-Integer Optimization Problems. PhD thesis, University of California, Davis, Graduate Group in Applied Mathematics, May 2017. URL: https://search.proquest.com/docview/1950269648.